
MAGNeT: Monitor for Application-Generated Network Traffic

Wu-chun Feng, Jeffrey R. Hay, Mark K. Gardner�
feng, jrhay, mkg � @lanl.gov

Computer & Computational Sciences Division
Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract— Over the last decade, network practitioners have focused
on monitoring, measuring, and characterizing traffic in the network to
gain insight into building critical network components (from the protocol
stack to routers and switches to network interface cards). Recent research
shows that additional insight can be obtained by monitoring traffic at the
application level (i.e., before application-sent traffic is modulated by the
protocol stack) rather than in the network (i.e., after it is modulated by
the protocol stack).

Consequently, this paper describes a Monitor for Application-
Generated Network Traffic (MAGNeT) that captures traffic generated by
the application rather than traffic in the network. MAGNeT consists of
application programs as well as modifications to the standard Linux ker-
nel. Together, these tools provide the capability of monitoring an appli-
cation’s network behavior and protocol state information in production
systems. The use of MAGNeT will enable the research community to con-
struct a library of real traces of application-generated traffic from which
researchers can more realistically test network protocol designs and the-
ory. MAGNeT can also be used to verify the correct operation of protocol
enhancements and to troubleshoot and tune protocol implementations.

I. MOTIVATION

Although monitoring [1–6] and characterizing [7–10] traf-
fic in the network provides insight into building critical net-
work components (e.g., ideal buffer sizes in routers), recent re-
search [11–13] shows that additional insight can be obtained by
monitoring and measuring traffic at the application level (i.e.,
before it is modulated by the protocol stack) rather than in the
network (i.e., after it is modulated by the protocol stack). For
example, knowing application traffic patterns can provide in-
sight into the design of a better protocol stack.

A. Background

Network researchers often use traffic libraries such as tc-
plib [14], network traces such as those at [15,16], or network
models such as those found in [9] to drive their network experi-
ments, particularly to test the performance of network-protocol
enhancements. However, such libraries, traces, and models
are based on measurements made by tcpdump [1] (or simi-
lar tools like PingER [2], NLANR Network Analysis Infras-
tructure [4], NIMI [5], CoralReef [6]), meaning that the traf-
fic an application sends on the network is captured only after
having passed through TCP (or more generally, any protocol
stack) and into the network. That is, the tools capture traffic on
the wire (or in the network) rather than at the application level.
Thus, the above tools cannot provide any protocol-independent
insight into the actual traffic patterns of an application.

This work was supported by the U.S. Dept. of Energy’s Laboratory-Directed
Research & Development Program and the Los Alamos Computer Science
Institute through Los Alamos National Laboratory contract W-7405-ENG-36.
Any opinions, findings, and conclusions, or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
DOE, Los Alamos National Laboratory, or the Los Alamos Computer Science
Institute. This paper is LA-UR 01-5063.

Data Link

IP

TCP

Application

NLANR
NIMI

PingER

NLANR
TCPDump

CoralReef
{MAGNeT

Network

TCP Kernel Monitor

Fig. 1. Monitoring Points of Various Tools

So, researchers have not been testing the performance of net-
work protocols using real, application-generated traffic traces;
rather, they have used once-modulated (by the protocol stack)
traffic traces as input, which are subsequently modulated a
second time during the testing of the protocol. If the dif-
ferences between application-generated traces and network-
captured traces are negligible, such a simplification is accept-
able. However, as we will show in this paper, the differences
in the traces are substantial, indicating that the protocol stack
adversely modulates the application-generated traffic patterns.
This observation may invalidate the empirical results gathered
from the performance evaluation of network protocols over the
last decade because many researchers used network-captured
traces rather than application-generated traces to drive their ex-
periments.

What network researchers need are traces of real,
application-generated traffic. Therefore, this paper describes
a Monitor for Application-Generated Network Traffic (MAG-
NeT) that captures traffic generated by the application rather
than in the network.

B. Related Work

As shown in Fig. 1, MAGNeT differs from tcpdump-like
measurement tools in that it can monitor traffic at the appli-
cation level, (i.e., before it traverses the protocol stack), and
throughout the entire protocol stack, as well as traffic entering
and leaving the network. The only other measurement tool that
makes similar measurements is the TCP kernel monitor from
Pittsburgh Supercomputing Center [17].

MAGNeT differs from the TCP kernel monitor in at least
three ways. First, MAGNeT, although described in this paper
as only a monitor for application-generated traffic (i.e., the in-
terface between the application layer and TCP layer), can be
used anywhere in the protocol stack. Second, MAGNeT mon-
itors a superset of the data that the TCP kernel monitor does.
Third, MAGNeT is implemented on the Linux operating sys-
tem whereas PSC’s TCP kernel monitor works on NetBSD.

Proceedings of the 10th International Conference on
Computer Communications and Networks (IC3N’01), October, 2001.



II. SOFTWARE ARCHITECTURE

Developing MAGNeT presents two design challenges. First
is the issue of accurate time measurement. MAGNeT uses
the CPU cycle counter available in modern microprocessors
to record timestamps with cycle-level granularity. This func-
tionality relies on code in the architecture-specific Linux code
base but should be present on most Linux platforms.

The second, and more difficult, challenge requires that
MAGNeT run on machines in a production environment in or-
der to obtain realistic application-traffic traces. Hence, MAG-
NeT must incur minimal overhead so that the end user is not
impacted and so that the application-generated traffic stream is
not adversely perturbed. This latter consideration requires that
any processing or filtering of the captured data be performed
off-line; reducing or filtering the data in real-time not only
adds an intolerable performance overhead but also adversely
perturbs the application-generated traffic stream.

We address these design issues in our MAGNeT software
distribution1, which consists of several user-application pro-
grams as well as modifications to the Linux kernel. The pri-
mary functionality of MAGNeT is contained in a patch to
the Linux kernel. The patch creates a circular buffer in ker-
nel memory and places calls throughout the networking stack
to record appropriate information as data traverses the stack.
A user-space program periodically empties this kernel buffer,
saving the binary data to the disk. For post-processing the
data, a set of data-analysis tools translates the binary data
into machine- and human-readable form. Finally, a library of
scripts to enable automated data collection from a set of hosts
completes the MAGNeT package.

Fig. 2 illustrates the operation and dataflow of MAGNeT at
a high level. Unmodified applications (that run on the test sys-
tem) periodically make send() and recv() system calls to
send and receive network traffic. These calls eventually make
use of TCP, IP, or other network protocols in the kernel to trans-
fer data on the network. For systems running MAGNeT, each
time a send(), recv(), or network protocol call is made,
an accompanying call is made to magnet-add(). This pro-
cedure saves relevant data to a circular buffer in kernel space,
which is then saved to disk by the user-level application pro-
gram magnet-read. The details of each of these steps is
discussed below.

A. MAGNeT in Kernel Space

The MAGNeT kernel patch adds several functions to the
Linux 2.4 kernel. The function magnet add() adds a data
point to a circular buffer that is guaranteed to always be in
kernel memory. This function can be called virtually any-
where in the protocol stack; it is optimized so that each
instrumentation call uses as few resources as possible. In
addition, a new /proc item is added to the file space at
/proc/net/magnet. This file may be read by any user to
determine the current state and parameters of the MAGNeT
kernel code.

�

The MAGNeT software distribution is currently undergoing alpha testing at
LANL. A beta prototype will soon be publicly available from http://www.
lanl.gov/radiant.

IP

Kernel User

kernel
buffer

magnet_add() magnet_read

Disk

send()

recv()

application

TCP

Network

UDP

Fig. 2. Overview of MAGNeT Operation

struct magnet_data {
void *sockid;
unsigned long long timestamp;
unsigned int event;
int size;
union magnet_ext_data data;

}; /* struct magnet data */

Fig. 3. The MAGNeT Instrumentation Record

A.1 Instrumentation Record

Fig. 3 shows the MAGNeT instrumentation record, the data
structure that magnet add() adds to the kernel buffer at each
instrumentation point. sockid is a unique identifier for each
connection stream, thus giving MAGNeT a way to separate
data traces into individual streams while protecting the privacy
of the application and user. The timestamp field is a CPU
cycle counter that is used to synchronize MAGNeT events.
Valid values for the event field (e.g., MAGNET IP SEND) in-
dicate the type of event a particular record refers to. size con-
tains the number of bytes transferred during a specific event.
The data field (a optional field selected at kernel compile
time) is a union of various structures in which information spe-
cific to particular protocols can be stored. This field provides a
mechanism for MAGNeT to record protocol state information
along with event transitions.

A.2 Instrumented Events

The MAGNeT kernel patch instruments the general socket-
handling code, the TCP layer, and the IP layer. Other pro-
tocols can be easily instrumented by adding new MAGNeT
event codes and placing calls to magnet add() at appro-
priate places in the protocol stack.

There exists a possibility that the space in the fixed-sized,
circular kernel buffer may be exhausted before the user-space
program is able to read the records it contains. However,
MAGNeT will not overwrite any recorded data. This is ac-
complished by using the timestamp field of the instrumenta-
tion record as a synchronization flag between MAGNeT user-
and kernel- processes. Before writing to a slot in the circu-
lar buffer, the MAGNeT kernel code checks the value of the
timestamp field for that slot. A value other than zero indi-
cates that the slot has not yet been copied to user space and
that the kernel buffer is full. In this case, the kernel code in-
crements a count of the number of instrumentation records that



could not be written due to the buffer being full. After the user-
level application reads a record from the buffer, it writes a zero
to the timestamp field to signal to the kernel that the slot
is available. Once buffer space becomes available, the kernel
writes a special instrumentation record with an event type of
MAGNET LOST and with the size field set to the number of
instrumentation records dropped.

Our experience to date indicates that while dropped instru-
mentation records are possible, they rarely occur during the
monitoring of actual users. (See Section III-B.3 for details.)

B. MAGNeT in User Space

The user-level interface to MAGNeT consists of three ap-
plication programs (magnet-read, magnet-parse, and
mkmagnet), a special device file to facilitate kernel-user com-
munication, and a collection of automating scripts. The appli-
cation program magnet-read saves data from the kernel’s
buffer to a disk file and magnet-parse translates the saved
data into an understandable format. mkmagnet is a small util-
ity program to create the files that magnet-read requires
to operate. The scripts included with the MAGNeT distribu-
tion allow the operation of MAGNeT to be fully automated
and transparent to the end user.

B.1 magnet-read, mkmagnet, magnet-parse

To minimize the potential for record loss when MAGNeT
reads the instrumentation records from the circular buffer in
the kernel and writes them to disk, we map the circular buffer
from kernel space into user space via a special “shared mem-
ory” device file. With this mapping in place, no additional ker-
nel code is executed; the application program may simply read
the shared memory and write it to disk. This transparency is ac-
complished by the program magnet-read, which copies the
records by linking the shared memory region to a pre-existing
file via the kernel’s memory-mapped I/O system. The mkmag-
net application creates and initializes the aforementioned file
prior to being mapped into memory. The last tool, magnet-
parse, reads data collected by magnet-read and dumps a
tab-delimited ASCII table of the collected data for further pro-
cessing.

B.2 Automating Scripts

Two shell scripts in the MAGNeT distribution, mag-
net.cron and magnet.copy, provide examples of how to
create an automated, transparent, application-monitoring envi-
ronment on a campus network. magnet.cron is the overall
MAGNeT management script, which should be executed upon
initial boot, and at some interval (e.g., daily) during system op-
eration. When run, it ensures that the proper device file exists
and that a file has been created on disk with mkmagnet. It
then starts magnet-read.

C. MAGNeT Timestamps

To ensure the greatest accuracy possible, MAGNeT uses the
cycle counter available on contemporary microprocessors as
the source of its timestamps. MAGNeT obtains this informa-
tion via the kernel’s getcyclecounter() function, which
keeps the MAGNeT code hardware-independent. Given the

TABLE I
MAGNET VS. tcpdump

Configuration Throughput Send CPU Receive CPU
(Kb/s) (%) (%)

Linux 2.4.3 94.1
�

0.0 15.2
�

0.1 33.5
�

0.1
MAGNeT 94.1

�
0.1 16.9

�
0.2 33.5

�
0.1

magnet-read/rcv 90.8
�

0.8 20.7
�

0.3 34.4
�

1.0
magnet-read/snd 90.7

�
0.9 23.7

�
1.7 32.4

�
0.4

tcpdump/rcv 89.4
�

1.5 18.0
�

0.4 59.8
�

0.9
tcpdump/snd 89.4

�
0.8 45.0

�
0.6 31.9

�
0.3

(a) 100Mbs (Fast Ethernet)

Configuration Throughput Send CPU Receive CPU
(Kb/s) (%) (%)

Linux 2.4.3 459.5
�

1.6 61.0
�

0.3 82.4
�

0.2
MAGNeT 452.5

�
1.8 63.0

�
0.4 82.6

�
0.3

magnet-read/rcv 444.3
�

1.7 62.4
�

0.3 82.0
�

0.3
magnet-read/snd 440.2

�
2.1 63.1

�
0.5 81.1

�
0.4

tcpdump/rcv 290.7
�

15.6 36.1
�

2.0 91.5
�

0.5
tcpdump/snd 343.2

�
18.7 93.2

�
0.5 64.1

�
3.3

(b) 1000Mbs (Gigabit Ethernet)

speed of the processor, the difference between two cycle counts
can be converted to elapsed time. Thus, the first record created
by MAGNeT is of type MAGNET SYSINFO and the size field
of this record contains the processor clock speed in kHz.

III. MAGNET PERFORMANCE ANALYSIS

In this section, we demonstrate MAGNeT’s ability to record
application and network-stack events without adversely per-
turbing the traffic stream or application behavior. We also use
MAGNeT-collected data to show significant differences be-
tween an application’s network demands and the actual traffic
delivered to the network.

A. Experimental Method

As an indication of how much MAGNeT perturbs
application-generated network traffic, we measure the maxi-
mum data rate between a sender and receiver as well as the
CPU utilization. In addition, we measure the overhead of run-
ning tcpdump as a point of comparison. In total, we run six
different configurations on 100-Mbps and Gigabit Ethernet net-
works, as shown in Table I.

We conduct our tests between two identical dual 400MHz
Pentium IIs with 100Mbps or 1000Mbps Ethernet card (con-
nected via an Extreme Networks Summit 7i switch) and con-
figure MAGNeT to record application send() and recv()
socket calls as well as TCP and IP events. MAGNeT uses the
default 256KB kernel buffer to store event records.

To generate the workload, we run netperf [18] on the
sender,2 transmitting data as fast as possible. We minimize the
amount of interference in our measurements by eliminating all
other network traffic and minimizing the number of processes
running on the test machines to netperf and a few essential
Linux services.

�
The command used was “netperf -P 0 -c � local CPU index �

-C � remote CPU index � -H � hostname � ”



0

5

10

15

20

25

30

35

40

MAGNeT MAGNeT/recv MAGNeT/send tcpdump/recv tcpdump/send

Pe
rc

en
t R

ed
uc

tio
n 

in
 T

hr
ou

gh
pu

t

Test Conducted

100Mb/s

1000Mb/s

Fig. 4. Percent Reduction in Network Throughput

B. Performance

While no monitoring system can be completely transpar-
ent to the workload being monitored, MAGNeT is designed
to have minimal impact on overall network throughput. Table I
shows how MAGNeT performs in comparison to tcpdump.
Along with the mean, the width of the 95% confidence interval
is given. Figures 4 and 5 present this data graphically.

By default (and as used in our experiments), tcpdump
stores the first 68 bytes of every packet. Our configuration of
MAGNeT, on the other hand, stores 96 bytes for each packet.3

B.1 Network Throughput

The kernel-resident portion of MAGNeT is always execut-
ing, regardless of whether information is being saved to disk
or not. The first pair of bars in Fig. 4, labeled “MAGNeT,”
shows only a small penalty when no data is being saved to disk.
The next two pairs of bars show that MAGNeT incurs less than
a 5% reduction in network throughput when magnet-read
runs on either the receiver or sender. Furthermore, the penalty
is nearly constant regardless of network speed. In contrast,
while tcpdump incurs roughly the same penalty as MAGNeT
over 100Mbps networks, the penalty increases to 25%-35% of
total throughput at 1000Mbps. Thus, MAGNeT scales better
with increasing link speeds than tcpdump.

B.2 CPU Utilization

Next, we compare MAGNeT’s and tcpdump’s CPU utiliza-
tion as reported by netperf.4 Each bar in Fig. 5 reflects the
percentage increase in CPU utilization averaged over both the
sender and the receiver. In this case, MAGNeT also performs
better than tcpdump, which is not surprising since tcpdump
makes system calls from user space (thus incurring a context
switch) for every packet while MAGNeT executes primarily
within the kernel. What may be surprising is that both MAG-
NeT’s and tcpdump’s overhead appears to decrease when run
�
Although MAGNeT’s record size is only 24 bytes per event, our configu-

ration of MAGNeT instruments the events at each protocol layer in the stack,
resulting in four events per packet (or

���������
	��
bytes per packet).

This version of netperf measures CPU utilization via an “idle” loop in a
very low-priority process (which theoretically should only run when the system
is otherwise idle).

0

10

20

30

40

50

60

70

80

90

100

110

MAGNeT MAGNeT/recv MAGNeT/send tcpdump/recv tcpdump/send

Pe
rc

en
t I

nc
re

as
e 

in
 C

PU
 U

til
iz

at
io

n

Test Conducted

100Mb/s

1000Mb/s

Fig. 5. Average Percent Increase in CPU Utilization

on the faster network. This is due to interrupt coalescing, i.e.,
the network interface cards accumulate several incoming pack-
ets before interrupting the CPU. Thus, the average overhead of
servicing interrupts is greatly reduced. Had interrupt coalesc-
ing been disabled, the average CPU utilization for both MAG-
NeT and tcpdump would have increased.

B.3 Event Loss

During our testing, analysis of the MAGNeT-collected data
revealed that MAGNeT occasionally loses events at high net-
work utilization. For the 100Mbps trials, MAGNeT lost less
than than 3.2% of the total events; for the 1000Mbps tests, the
loss rate approached 15%. These losses are due to the 256KB
circular buffer in the kernel filling before magnet-read is
able to drain it.

Two methods exist for reducing the loss rate: (1) increasing
the kernel buffer size and/or (2) reducing the time magnet-
read waits before draining the kernel buffer. Fig. 6 shows
how changing the kernel buffer size or magnet-read delay
affects event-loss rate on a 100Mbps network. (Note: All other
tests discussed in this paper used MAGNeT’s default values for
these two parameters – 256KB kernel buffer with magnet-
read’s automatically calculated delay time.)

Increasing the size of the kernel buffer dramatically reduces
MAGNeT’s potential for event loss, down to virtually no lost
events under any network load with a 1MB buffer. However,
because this buffer is pinned in memory, a large buffer also
reduces the amount of physical memory available to the kernel
and applications. We chose 256KB to be the default buffer size
to reduce both CPU utilization and physical memory consumed
(i.e., to reduce the invasiveness of the monitor).

Another method for reducing event loss entails adjusting the
amount of time magnet-read sleeps before draining the ker-
nel buffer. However, shorter sleep times create more work (in
terms of CPU usage, and possibly, disk write activity), and thus
may interfere with the system’s normal use in a production en-
vironment.

The default sleep-time is computed as the average amount
of time it takes to fill the kernel buffer on a 100Mbps net-
work. This heuristic was chosen because it provides relatively
low event-loss rates without significantly impacting the user.



0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

20
0%

L
os

t E
ve

nt
s 

(P
er

ce
nt

ag
e)

Percent of default delay time

128KB
256KB
512KB

1024KB

Fig. 6. MAGNeT’s Event-Loss Rate, 100Mbs Ethernet

51

52

53

54

55

56

57

58

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

20
0%

A
ve

ra
ge

 C
PU

 L
oa

d 
(S

en
d+

R
ec

v)

Percent of default delay time

128KB
256KB
512KB

1024KB

Fig. 7. MAGNeT’s Average CPU Utilization, 100Mbs Ethernet

Command-line options are provided in magnet-read to ad-
just the delay. Fig. 7 shows the increase in average CPU uti-
lization for different sleep times and buffer sizes with MAG-
NeT running on the sending machine. While these differences
appear minor, even a small decrease in available CPU cycles
can have a dramatic effect on application run-time and com-
munication patterns (and thus, increased CPU utilization may
result in large perturbations of the monitored traffic).

By comparison, tcpdump also loses information, approxi-
mately 15% on a 100Mbps network (for the extreme load con-
ditions of our tests). This loss rate increases rapidly with higher
network speeds because tcpdump does no buffering.

In summary, if MAGNeT’s loss rate is too high, it can be
adjusted to an acceptable level via the mechanisms discussed
above; tcpdump lacks such adjustability. For example, to
drop MAGNeT’s loss rate to 0.5% while using the default
256K buffer, we adjust the magnet-read delay time to 35%
of its original value (Fig. 6). According to Fig. 7, this would
increase the overall CPU utilization from 53% to 55%. This is
still less than the 60% CPU utilization seen with tcpdump.

C. Network Perturbation

From the measurements presented in this section, MAG-
NeT clearly performs as efficiently as tcpdump on contem-

porary networks and more readily scales to higher-speed net-
works. In addition, by adding CPU cycle-counter code around
magnet-add() and relevant areas of magnet-read, we
are able to compute the number of cycles, on average, that
MAGNeT consumes while recording a single event. This
value is of interest in comparison to the minimum interarrival
time for packets on the physical network. For instance, on a
100Mbps Ethernet, a 40-byte Ethernet packet — the size of an
“empty” TCP packet — will arrive no faster than

�����
bytes ��

bits/byte �	��
 ��� Megabits/second ���� ��� sec. Our conserva-
tive tests indicate that magnet-add() requires 556 cycles,
on average, per recorded event while magnet-read requires
425 cycles. Thus, on our 400-MHz machines, MAGNeT takes����������� � � � cycles � ������������������� cycles/second������� � � sec to
record a single event. Since this is less time than it takes a min-
imal TCP packet to arrive or to be sent, the MAGNeT-induced
disturbances into the traffic stream should be quite small.

D. Design of tcpdump vs. MAGNeT

The performance numbers in this paper reflect a difference in
design philosophies between tcpdump and MAGNeT. tcp-
dump is a purely user-level, network-inspection tool, which
can be (and has been) relatively easily ported to a large num-
ber of different operating systems. Thus, many of the design
tradeoffs in tcpdump favor portability over pure performance.
In particular, libpcap, the packet capture library created for
tcpdump and used by other network monitors, such as Coral-
Reef, reflects this approach. The exact method used to inter-
cept network packets varies depending on the features avail-
able in the root operating system, but it always involves a sys-
tem call or other facility to cause a switch into kernel mode
and a copy of memory from the kernel to the user-level pro-
gram. This call-and-copy is repeated for every packet traveling
across the interface being monitored. At high network speeds,
the overhead of copying each individual packet between ker-
nel and user space becomes a significant burden. MAGNeT
benefits from having code embedded in the kernel to aggre-
gate multiple network packets into a single space which then is
copied in bulk, thus amortizing the cost of the copy over mul-
tiple packets. This approach incurs less overhead but is not as
portable as libpcap’s method.

IV. MAGNET IN THE REAL WORLD

We initially developed MAGNeT to investigate differences
between traffic generated by an application and that same traf-
fic after modulation by the protocol stack, i.e., when the traf-
fic hits the network. Thus far, we have observed many situa-
tions where significant differences exist. For instance, Fig. 8
shows a one-second trace of an FTP session that was taken
one minute into sending a Linux 2.2.18 kernel bzipped tar file
from our facilities in Los Alamos, NM to a location in Dallas,
TX — a trip of 30 hops across the Sprintlink backbone fab-
ric. This graph shows a dramatic difference (in both packet
size and inter-packet spacing) between application-generated
traffic patterns and the traffic actually delivered to the network.

Network researchers routinely test new network and pro-
tocol designs using traces of traffic seen in current networks
rather than the real traffic demands of applications. That



0

2000

4000

6000

8000

10000

12000

60 60.2 60.4 60.6 60.8 61

Si
ze

 (
B

yt
es

)

Time (Seconds)

Delivered to network Application send() call

Fig. 8. MAGNeT FTP Trace

TABLE II
EFFECT OF MULTIPLE TCP-STACK TRAVERSALS

Trial Data Size Interpacket Spacing
(sec)

Application 3284 0.124
1st TCP stack 1016 0.045
2nd TCP stack 919 0.037
3rd TCP stack 761 0.079
4th TCP stack 723 0.122

is, new designs are tested with network-delivered traffic, not
application-generated traffic. Thus, differences such as those
shown in Fig. 8 may have significant impact on the accuracy
of such tests. For example, if the network-delivered traffic pat-
tern from the above example is taken as the input to test the
performance of an enhanced TCP stack (as would be the case
if a tcpdump trace of the FTP session was used as input to a
network simulation), the packet sizes and inter-packet spacing
are once again modulated, as illustrated in Table II (in the row
labeled “1st TCP stack”). The remainder of the table shows
the effect of repeatedly using TCP output streams as inputs to
subsequent TCP stacks.5

V. CONCLUSION

Current traffic libraries, network traces, and network mod-
els are based on measurements made by tcpdump (or similar
tools such as PingER, NLANR Network Analysis Infrastruc-
ture, NIMI, and CoralReef). These tools do not capture an
application’s true traffic demands; instead they capture an ap-
plication’s demands after having been modulated by the proto-
col stack. Therefore, existing traffic libraries, network traces,
and network models cannot provide any protocol-independent

�

Such repeated use is possible when communicating between end hosts in
different domains. For example, when sending data via FTP between hosts
at Los Alamos National Laboratory (LANL) and Sandia National Laboratory
(SNL), the FTP connection is actually broken up into three consecutive con-
nections, i.e., (1) LANL end host to LANL firewall, (2) LANL firewall to SNL
firewall, and (3) SNL firewall to SNL end host. Thus, the initial application-
generated traffic pattern that originated at the LANL end host goes through the
protocol stack a total of six times (three sends and three receives).

insight into the actual traffic patterns of an application.
MAGNeT fills the above void by providing a flexible and

low-overhead infrastructure to monitor network traffic virtu-
ally anywhere in the protocol stack. Using MAGNeT, we have
shown that the traffic demands of applications are not accu-
rately reflected by the traffic on the network wire because the
protocol stack (i.e., TCP) adversely modulates the application-
generated traffic before it gets to the network wire. Hence,
while current network models may accurately reflect current
network-wire traffic, they are not useful in providing insight
into application-generated traffic patterns nor in optimizing ap-
plication communications.

The potential applications of MAGNeT include, but are not
necessarily limited to, (1) constructing a library of traces of
application-generated traffic, (2) verifying the correct opera-
tion of protocol enhancements to TCP, IP (also IPv6 and IPsec),
or other protocols, (3) troubleshooting and tuning protocol im-
plementations, and (4) security scanning. In this paper, we fo-
cused on the first application for MAGNeT — by providing
a library of application-generated network traces, the network
research community can drive their experiments (whether sim-
ulative and live) with real, application-generated traffic.

REFERENCES

[1] “tcpdump,” http://www.tcpdump.org.
[2] W. Matthews and L. Cottrell, “The PingER Project: Active Internet Per-

formance Monitoring for the HENP Community,” IEEE Communica-
tions, May 2000.

[3] S. Kalidindi and M. Zekauskas, “Surveyor: An Infrastructure for Internet
Performance Measurements,” in INET’99 Proceedings.

[4] A.J. McGregor, H-W Braun, and J.A. Brown, “The NLANR Network
Analysis Infrastructure,” IEEE Communications, May 2000.

[5] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architecture for
large-scale internet measurement,” IEEE Communications, 1998.

[6] CAIDA, “CoralReef Software Suite,” http://www.caida.org/
tools/measurement/coralreef.

[7] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the Self-Similar
Nature of Ethernet Traffic (Extended Version),” IEEE/ACM Transactions
on Networking, vol. 2, no. 1, pp. 1–15, February 1994.

[8] K. Park, G. Kim, and M. Crovella, “On the Relationship Between File
Sizes, Transport Protocols, and Self-Similar Network Traffic,” in Proc.
of the Int’l Conf. on Network Protocols, October 1996.

[9] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson
Modeling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp.
226–244, June 1995.

[10] V. J. Ribeiro, R. H. Riedi, M. S. Crouse, and R. G. Baraniuk, “Multiscale
Queuing Analysis of Long-Range Dependent Network Traffic,” in Proc.
of IEEE INFOCOM’00, March 2000.

[11] P. Tinnakornsrisuphap, W. Feng, and I. Philp, “On the Burstiness of the
TCP Congestion-Control Mechanism in a Distributed Computing Sys-
tem,” in Proc. of the Int’l Conf. on Dist. Comp. Sys., April 2000.

[12] W. Feng and P. Tinnakornsrisuphap, “The Adverse Impact of the TCP
Congestion-Control Mechanism in Heterogeneous Computing Systems,”
in Proc. of the Int’l Conf. on Parallel Processing, August 2000.

[13] W. Feng and P. Tinnakornsrisuphap, “The Failure of TCP in High-
Performance Computational Grids,” in Proc. of SC 2000: High-
Performance Networking and Computing Conf., November 2000.

[14] P. Danzig and S. Jamin, “tcplib: A Library of TCP Internetwork
Traffic Characteristics,” http://irl.eecs.umich.edu/jamin/
papers/tcplib/tcplibtr.ps.Z, 1991.

[15] “The Internet Traffic Archive,” http://ita.ee.lbl.gov/html/
traces.html.

[16] A. Kato, J. Murai, and S. Katsuno, “An Internet Traffic Data Repository:
The Architecture and the Design Policy,” in INET’99 Proceedings.

[17] J. Semke, “PSC TCP Kernel Monitor,” Tech. Rep. CMU-PSC-TR-2000-
0001, PSC/CMU, May 2000.

[18] “Netperf,” http://www.netperf.org.


